Evolutionary Many-Objective Optimization: A Quick-Start Guide

نویسندگان

  • Shelvin Chand
  • Markus Wagner
چکیده

Multi-objective optimization problems having more than three objectives are referred to as many-objective optimization problems. Many-objective optimization brings with it a number of challenges that must be addressed, which highlights the need for new and better algorithms that can efficiently handle the growing number of objectives. This article reviews the different challenges associated with many-objective optimization and the work that has been done in the recent-past to alleviate these difficulties. It also highlights how the existing methods and body of knowledge have been used to address the different real world many-objective problems. Finally, it brings focus to some future research opportunities that exist with many-objective optimization. We report in this article what is commonly used, be it algorithms or test problems, so that the reader knows what are the benchmarks and also what other options are available. We deem this to be especially useful for new researchers and for researchers from other fields who wish to do some work in the area of many-objective optimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids

In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...

متن کامل

OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS

Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...

متن کامل

An Artificial Immune System-based Many-Objective Optimization Algorithm with Network Activation Scheme

In the research of multi-objective optimization algorithm, evolutionary algorithms have considered to be very successful tools. Artificial Immune System (AIS)-based algorithms as one of the viable alternative have also be widely developed in this domain. Over the years, researchers of evolutionary algorithms have extended their interest to many-objective situations; however works in AIS-based a...

متن کامل

Process Parameter Optimization In Multi-Pass Turning Operation Using Hybrid Firefly Swarm Algorithm

Evolutionary algorithms are the choice of many researchers for optimizing machining parameters. Even though evolutionary algorithms are commonly used for solving constrained optimization problems, however in practice sometimes they deliver only insignificant performance. The difficulty with evolutionary algorithms is that they start with random initial population and all its populations become ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015